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[p.xvii] 

NOTE ON SYMBOLISM 
 
In some of these essays Ramsey uses the symbolism of A.N. Whitehead and Bertrand Russell's 
Principia Mathematica.  Its most important features are :-- 
 
p, q, r used for propositions 
 
a, b, c used for individuals 
 
ƒ, g, φ, χ, ψ used for propositional functions 
 
[These are sometimes written φx̂ , ψ( x̂ , ŷ , ẑ ), etc. to show how many arguments they take.] 
 
Then φa [sometimes written φ(a)], ψ(a, b, c), etc., are propositions. 
 
x, y, z used for variables 
 
(x).φx meaning For every x,φx is true 
 
(∃  x).φx meaning There is an x for which φx is true. 
 
Logical constants: -- 
 
~ meaning not 
 
∨  meaning or 
 
. meaning and 
 
⊃⊃⊃⊃  meaning implies [⊃⊃⊃⊃ x implies for every x] 
 
≡ meaning is equivalent to [≡x is equivalent to for every x] 
 
Other expressions sometimes used in this book: -- 
 
x̂ φ(x) meaning the class of φ's. 
 
∈  meaning is a member of the class 
 
⊂⊂⊂⊂  meaning is contained in (relation between classes) 
 
[p.xviii] 
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Nc meaning the cardinal number of. 
 
(ιx) (φx) meaning the one and only thing satisfying φ 
 
E! (ιx) (φx) meaning One and only one thing satisfies φ [see note above] 
 
Points, colons, etc., . : :. are used for bracketing. 
 
Ramsey also uses the following symbols not used by Whitehead and Russell: -- 
 
A stroke -  above the proposition or function to denote its contradictory [ p  = ~ p]  
 
(a) meaning the class whose only member is a. 
 
Occasionally Ramsey uses ordinary mathematical notations [m ≡ n (mod l) means m and n when 
divided by l have the same remainder], and in discussing probability J.M. Keynes's symbolism p/h 
meaning the probability of proposition p given proposition h. 
 
 
 R.B.B. 
 [Richard B. Braithwaite] 
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[p.156] 
 

 
TRUTH AND PROBABILITY 

 
(1926) 

 
 

 
To say of what is that it is not, or of what is not that it is, is false, while to say of what is that 
it is and of what is not that it is not is true.  

-- Aristotle. 
 
When several hypotheses are presented to our mind which we believe to be mutually 
exclusive and exhaustive, but about which we know nothing further, we distribute our belief 
equally among them .... This being admitted as an account of the way in which we actually 
do distribute our belief in simple cases, the whole of the subsequent theory follows as a 
deduction of the way in which we must distribute it in complex cases if we would be 
consistent.   

-- W. F. Donkits. 
 
The object of reasoning is to find out, from the consideration of what we already know, 
something else which we do not know. Consequently, reasoning is good if it be such as to 
give a true conclusion from true premises, and not otherwise.  

-- C. S. Peirce. 
 
Truth can never be told so as to be understood, and not be believed.  

-- W. Blake. 
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[p.157] 
 
 

FOREWORD 
 
In this essay the Theory of Probability is taken as a branch of logic, the logic of partial belief and 
inconclusive argument; but there is no intention of implying that this is the only or even the most 
important aspect of the subject.  Probability is of fundamental importance not only in logic but also 
in statistical and physical science, and we cannot be sure beforehand that the most useful 
interpretation of it in logic will be appropriate in physics also. Indeed the general difference of 
opinion between statisticians who for the most part adopt the frequency theory of probability and 
logicians who mostly reject it renders it likely that the two schools are really discussing different 
things, and that the word 'probability' is used by logicians in one sense and by statisticians in 
another. The conclusions we shall come to as to the meaning of probability in logic must not, 
therefore, be taken as prejudging its meaning in physics.1  

                                                 
1  [p.157] [A final chapter, on probability in science, was designed but not written. -- ED.] 
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[p.158] 
 

CONTENTS 
 
(1) The Frequency Theory 
(2) Mr Keynes' Theory 
(3) Degrees of Belief 
(4) The Logic of Consistency 
(5) The Logic of Truth 

 
(1) THE FREQUENCY THEORY 

 
In the hope of avoiding some purely verbal controversies, I propose to begin by making some 
admissions in favour of the frequency theory. In the first place this theory must be conceded to have 
a firm basis in ordinary language, which often uses 'probability' practically as a synonym for 
proportion; for example, if we say that the probability of recovery from smallpox is three-quarters, 
we mean, I think, simply that that is the proportion of smallpox cases which recover. Secondly, if 
we start with what is called the calculus of probabilities, regarding it first as a branch of pure 
mathematics, and then looking round for some interpretation of the formulae which shall show that 
our axioms are consistent and our subject not entirely useless, then much the simplest and least 
controversial interpretation of the calculus is one in terms of frequencies. This is true not only of the 
ordinary mathematics of probability, but also of the symbolic calculus developed by Mr. Keynes; 
for if in his a/h, a and h are taken to be not propositions but propositional functions or 
class-concepts which define finite classes, and a/h is taken to mean the proportion of members of h 
which are also members of a, then all his propositions become arithmetical truisms. 
 
[p.159] 
 
Besides these two inevitable admissions, there is a third and more important one, which I am 
prepared to make temporarily although it does not express my real opinion. It is this.  Suppose we 
start with the mathematical calculus, and ask, not as before what interpretation of it is most 
convenient to the pure mathematicism, but what interpretation gives results of greatest value to 
science in general, then it may be that the answer is again an interpretation in terms of frequency; 
that probability as it is used in statistical theories, especially in statistical mechanics -- the kind of 
probability whose logarithm is the entropy -- is really a ratio between the numbers, of two classes, 
or the limit of such a ratio. I do not myself believe this, but I am willing for the present to concede 
to the frequency theory that probability as used in modern science is really the same as frequency. 
 
But, supposing all this admitted, it still remains the case that we have the authority both of ordinary 
language and of many great thinkers for discussing under the heading of probability what appears to 
be quite a different subject, the logic of partial belief.  It may be that, as some supporters of the 
frequency theory have maintained, the logic of partial belief will be found in the end to be merely 
the study of frequencies, either because partial belief is definable as, or by reference to, some sort of 
frequency, or because it can only be the subject of logical treatment when it is grounded on 
experienced frequencies. Whether these contentions are valid can, however, only be decided as a 
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result of our investigation into partial belief, so that I propose to ignore the frequency theory for the 
present and begin an inquiry into the logic of partial belief. In this, I think, it will be most 
convenient if, instead of straight away developing my own theory, I begin by examining the views 
of Mr Keynes, which are so well known and in essentials so widely accepted that readers probably 
feel [p.160] that there is no ground for re-opening the subject de novo until they have been disposed 
of. 
 

(2) MR KEYNES' THEORY 
 
Mr Keynes1 starts from the supposition that we make probable inferences for which we claim 
objective validity; we proceed from full belief in one proposition to partial belief in another, and we 
claim that this procedure is objectively right, so that if another man in similar circumstances 
entertained a different degree of belief, he would be wrong in doing so. Mr Keynes accounts for this 
by supposing that between any two propositions, taken as premiss and conclusion, there holds one 
and only one relation of a certain sort called probability relations; and that if, in any given case, the 
relation is that of degree α, from full belief in the premiss, we should, if we were rational, proceed 
to a belief of degree α in the conclusion. 
 
Before criticising this view, I may perhaps be allowed to point out an obvious and easily corrected 
defect in the statement of it. When it is said that the degree of the probability relation is the same as 
the degree of belief which it justifies, it seems to be presupposed that both probability relations, on 
the one hand, and degrees of belief on the other can be naturally expressed in terms of numbers, and 
then that the number expressing or measuring the probability relation is the same as that expressing 
the appropriate degree of belief. But if, as Mr. Keynes holds, these things are not always expressible 
by numbers, then we cannot give his statement that the degree of the one is the same as the degree 
of the other such a simple interpretation, but must suppose him to mean only that there is a one-one 
correspondence between probability relations and the degrees of belief which [p.161] they justify.   
This correspondence must clearly preserve the relations of greater and less, and so make the 
manifold of probability relations and that of degrees of belief similar in Mr Russell's sense. I think it 
is a pity that Mr Keynes did not see this clearly, because the exactitude of this correspondence 
would have provided quite as worthy material scepticism as did the numerical measurement of pro-
bability relations. Indeed some of his arguments against their numerical measurement appear to 
apply quite equally well against their exact correspondence with degrees of belief; for instance, he 
argues that if rates of insurance correspond to subjective, i.e. actual, degrees of belief, these are not 
rationally determined, and we cannot infer that probability relations can be similarly measured. It 
might be argued that the true conclusion in such a case was not that, as Mr Keynes thinks, to the 
non-numerical probability relation corresponds a non-numerical degree of rational belief, but that 
degrees of belief, which were always numerical, did not correspond one to one with the probability 
relations justifying them. For it is, I suppose, conceivable that degrees of belief could be measured 
by a psychogalvanometer or some such instrument, and Mr Keynes would hardly wish it to follow 
that probability relations could all be derivatively measured with the measures of the beliefs which 
they justify. 
 

                                                 
1  [p.160] J.M. Keynes, A Treatise on Probability (1921). 
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But let us now return to a more fundamental criticism of Mr Keynes' views, which is the obvious 
one that there really do not seem to be any such things as the probability relations he describes.  He 
supposes that, at any rate in certain cases, they can be perceived; but speaking for myself I feel con-
fident that this is not true. I do not perceive them, and if I am to be persuaded that they exist it must 
be by argument; moreover I shrewdly suspect that others do not perceive them either, because they 
are able to come to so very little agreement as to which of them relates any two given propositions. 
 
[p.162] 
 
All we appear to know about them are certain general propositions, the laws of addition and 
multiplication; it is as if everyone knew the laws of geometry but no one could tell whether any 
given object were round or square; and I find it hard to imagine how so large a body of general 
knowledge can be combined with so slender a stock of particular facts.  It is true that about some 
particular cases there is agreement, but these somehow paradoxically are always immensely 

complicated; we all agree that the probability of a coin coming down heads is 
2
1 , but we can none 

of us say exactly what is the evidence which forms the other term for the probability relation about 
which we are then judging. If, on the other hand, we take the simplest possible pairs of propositions 
such as 'This is red' and 'That is blue' or 'This is red' and 'That is red', whose logical relations should 
surely be easiest to see, no one, I think, pretends to be sure what is the probability relation which 
connects them. Or, perhaps, they may claim to see the relation but they will not be able to say 

anything about it with certainty, to state if it is more or less than 
3
1 , or so on. They may, of course, 

say that it is incomparable with any numerical relation, but a relation about which so little can be 
truly said will be of little scientific use and it will be hard to convince a sceptic of its existence. 
Besides this view is really rather paradoxical; for any believer in induction must admit that between 
'This is red ' as conclusion and ' This is round ', together with a billion propositions of the form 'a is 
round and red' as evidence, there is a finite probability relation; and it is hard to suppose that as we 
accumulate instances there is suddenly a point, say after 233 instances, at which the probability 
relation becomes finite and so comparable with some numerical relations. 
 
It seems to me that if we take the two propositions 'a is red', 'b is red', we cannot really discern more 
than four [p.163] simple logical relations between them; namely identity of form, identity of 
predicate, diversity of subject, and logical independence of import. If anyone were to ask me what 
probability one gave to the other, I should not try to answer by contemplating the propositions and 
trying to discern a logical relation between them, I should, rather, try to imagine that one of them 
was all that I knew, and to guess what degree of confidence I should then have in the other.  If I 
were able to do this, I might no doubt still not be content with it, but might say ' This is what I 
should think, but, of course, I am only a fool' and proceed to consider what a wise man would think 
and call that the degree of probability.  This kind of self-criticism I shall discuss later when 
developing my own theory; all that I want to remark here is that no one estimating a degree of 
probability simply contemplates the two propositions supposed to be related by it; he always 
considers inter alia his own actual or hypothetical degree of belief. This remark seems to me to be 
borne out by observation of my own behaviour; and to be the only way of accounting for the fact 
that we can all give estimates of probability in cases taken from actual life, but are quite unable to 
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do so in the logically simplest cases in which, were probability a logical relation, it would be easiest 
to discern. 
 
Another argument against Mr Keynes' theory can, I think, be drawn from his inability to adhere to it 
consistently even in discussing first principles. There is a passage in his chapter on the 
measurement of probabilities which reads as follows: -- 
 
"Probability is, vide Chapter 11 (§12), relative in a sense to the principles of human reason.  The 
degree of probability, which it is rational for us to entertain, does not presume perfect logical 
insight, and is relative in part to the secondary propositions which we in fact know; and it is not 
dependent upon whether more perfect logical insight [p.164] is or is not conceivable. It is the 
degree of probability to which those logical processes lead, of which our minds are capable; or, in 
the language of Chapter II, which those secondary propositions justify, which we in fact know. If 
we do not take this view of probability, if we do not limit it in this way and make it, to this extent, 
relative to human powers, we are altogether adrift in the unknown; for we cannot ever know what 
degree of probability would be justified by the perception of logical relations which we are, and 
must always be, incapable of comprehending." 1  
 
This passage seems to me quite unreconcilable with the view which Mr Keynes adopts everywhere 
except in this and another similar passage. For he generally holds that the degree of belief which we 
are justified in placing in the conclusion of an argument is determined by what relation of 
probability unites that conclusion to our premisses, There is only one such relation and 
consequently only one relevant true secondary proposition, which, of course, we may or may not 
know, but which is necessarily independent of the human mind. If we do not know it, we do not 
know it and cannot tell how far we ought to believe the conclusion. But often, he supposes, we do 
know it; probability relations are not ones which we are incapable of comprehending. But on this 
view of the matter the passage quoted above has no meaning: the relations which justify probable 
beliefs are probability relations, and it is nonsense to speak of them being justified by logical 
relations which we are, and must always be, incapable of comprehending.  The significance of the 
passage for our present purpose lies in the fact that it seems to presuppose a different view of 
probability, in which indefinable probability relations play no part, but in which the degree of 
rational belief depends on a variety of logical relations. For instance, there might be between the 
premiss and conclusion the relation [p.165] that the premiss was the logical product of a thousand 
instances of a generalization of which the conclusion was one other instance, and this relation, 
which is not an indefinable probability relation but definable in terms of ordinary logic and so easily 
recognizable, might justify a certain degree of belief in the conclusion on the part of one who 
believed the premiss. We should thus have a variety of ordinary logical relations justifying the same 
or different degrees of belief. To say that the probability of a given h was such-and-such would 
mean that between a and h was some relation justifying such-and-such a degree of belief. And on 
this view it would be a real point that the relation in question must not be one which the human 
mind is incapable of comprehending. 
 

                                                 
1  [p.164] p. 32, his italics. 
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This second view of probability as depending on logical relations but not itself a new logical 
relation seems to me more plausible than Mr Keynes' usual theory; but this does not mean that I feel 
at all inclined to agree with it. It requires the somewhat obscure idea of a logical relation justifying a 
degree of belief, which I should not like to accept as indefinable because it does not seem to be at 
all a clear or simple notion. Also it is hard to say what logical relations justify what degrees of 
belief, and why; any decision as to this would be arbitrary, and would lead to a logic of probability 
consisting of a host of so-called 'necessary' facts, like formal logic on Mr Chadwick's view of 
logical constants.1 Whereas I think it far better to seek an explanation of this 'necessity' after the 
model of the work of Mr Wittgenstein, which enables us to see clearly in what precise sense and 
why logical propositions are necessary, and in a general way why the system of formal logic 
consists of the propositions it does consist of, and what is their common characteristic. Just as 
natural science tries to explain and [p.166] account for the facts of nature, so philosophy should try, 
in a sense, to explain and account for the facts of logic; a task ignored by the philosophy which 
dismisses these facts as being unaccountably and in an indefinable sense ' necessary'. 
 
Here I propose to conclude this criticism of Mr Keynes' theory, not because there are not other 
respects in which it seems open to objection, but because I hope that what I have already said is 
enough to show that it is not so completely satisfactory as to render futile any attempt to treat the 
subject from a rather different point of view. 
 

(3) DEGREES OF BELIEF 
 
The subject of our inquiry is the logic of partial belief, and I do not think we can carry it far unless 
we have at least an approximate notion of what partial belief is, and how, if at all, it can be 
measured. It will not be very enlightening to be told that in such circumstances it would be rational 
to believe a proposition to the extent of 2/3, unless we know what sort of a belief in it that means.  
We must therefore try to develop a purely psychological method of measuring belief. It is not 
enough to measure probability; in order to apportion correctly our belief to the probability we must 
also be able to measure our belief.   
 
It is a common view that belief and other psychological variables are not measurable, and if this is 
true our inquiry will be vain ; and so will the whole theory of probability conceived as a logic of 
partial belief; for if the phrase 'a belief two-thirds of certainty ' is meaningless, a calculus whose 
sole object is to enjoin such beliefs will be meaningless also. Therefore unless we are prepared to 
give up the whole thing as a bad job we are bound to hold that beliefs can to some extent be 
measured. If we were to follow the analogy [p.167] of Mr Keynes' treatment of probabilities we 
should say that some beliefs were measurable and some not; but this does not seem to me likely to 
be a correct account of the matter: I do not see how we can sharply divide beliefs into those which 
have a position in the numerical scale and those which have not. But I think beliefs do differ in 
measurability in the following two ways. First, some beliefs can be measured more accurately than 
others; and, secondly, the measurement of beliefs is almost certainly an ambiguous process leading 
to a variable answer depending on how exactly the measurement is conducted. The degree of a 
belief is in this respect like the time interval between two events; before Einstein it was supposed 

                                                 
1  [p.165] "Logical Constants", Mind, 1927.  
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that all the ordinary ways of measuring a time interval would lead to the same result if properly 
performed. Einstein showed that this was not the case; and time interval can no longer be regarded 
as an exact notion, but must be discarded in all precise investigations. Nevertheless, time interval 
and the Newtonian system are sufficiently accurate for many purposes and easier to apply.   
 
I shall try to argue later that the degree of a belief is just like a time interval; it has no precise 
meaning unless we specify more exactly how it is to be measured. But for many purposes we can 
assume that the alternative ways of measuring it lead to the same result, although this is only 
approximately true. The resulting discrepancies are more glaring in connection with some beliefs 
than with others, and these therefore appear less measurable. Both these types of deficiency in 
measurability, due respectively to the difficulty in getting an exact enough measurement and to an 
important ambiguity in the definition of the measurement process, occur also in physics and so are 
not difficulties peculiar to our problem; what is peculiar is that it is difficult to form any idea of 
how the measurement is to be conducted, how a unit is to be obtained, and so on. 
 
[p.168] 
 
Let us then consider what is implied in the measurement of beliefs. A satisfactory system must in 
the first place assign to any belief a magnitude or degree having a definite position in an order of 
magnitudes; beliefs which are of the same degree as the same belief must be of the same degree as 
one another, and so on. Of course this cannot be accomplished without introducing a certain 
amount of hypothesis or fiction. Even in physics we cannot maintain that things that are equal to the 
same thing are equal to one another unless we take 'equal' not as meaning 'sensibly equal' but a 
fictitious or hypothetical relation. I do not want to discuss the metaphysics or epistemology of this 
process, but merely to remark that if it is allowable in physics it is allowable in psychology also. 
The logical simplicity characteristic of the relations dealt with in a science is never attained by 
nature alone without any admixture of fiction.   
 
But to construct such an ordered series of degrees is not the whole of our task; we have also to 
assign numbers to these degrees in some intelligible manner. We can of course easily explain that 
we denote full belief by 1, full belief in the contradictory by 0, and equal beliefs in the proposition 

and its contradictory by 
2
1 .  But it is not so easy to say what is meant by a belief 

3
2  of certainty, or 

a belief in the proposition being twice as strong as that in its contradictory. This is the harder part of 
the task, but it is absolutely necessary; for we do calculate numerical probabilities, and if they are to 
correspond to degrees of belief we must discover some definite way of attaching numbers to 
degrees of belief. In physics we often attach numbers by discovering a physical process of addition1 
: the measure-numbers of lengths are not assigned arbitrarily subject only to the proviso that the 
greater length shall have the greater measure; we determine them further by deciding on a [p.169] 
physical meaning for addition ; the length got by putting together two given lengths must have for 
its measure the sum of their measures. A system of measurement in which there is nothing 
corresponding to this is immediately recognized as arbitrary, for instance Mohs' scale of hardness1 

                                                 
1  [p.168] See N. Campbell, Physics The Elements (1920), p.277. 
1  [p.169] Ibid., p.271. 
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in which 10 is arbitrarily assigned to diamond, the hardest known material, 9 to the next hardest, 
and so on.  We have therefore to find a process of addition for degrees of belief, or some substitute 
for this which will be equally adequate to determine a numerical scale. 
 
Such is our problem; how are we to solve it? There are, I think, two ways in which we can begin. 
We can, in the first place, suppose that the degree of a belief is something perceptible by its owner; 
for instance that beliefs differ in the intensity of a feeling by which they are accompanied, which 
might be called a belief-feeling or feeling of conviction, and that by the degree of belief we mean 
the intensity of this feeling. This view would be very inconvenient, for it is not easy to ascribe 
numbers to the intensities of feelings; but apart from this it seems to me observably false, for the 
beliefs which we hold most strongly are often accompanied by practically no feeling at all; no one 
feels strongly about things he takes for granted. 
 
We are driven therefore to the second supposition that the degree of a belief is a causal property of 
it, which we can express vaguely as the extent to which we are prepared to act on it. This is a 
generalization of the well-known view, that the differentia of belief lies in its causal efficacy, which 
is discussed by Mr Russell in his Analysis of Mind.  He there dismisses it for two reasons, one of 
which seems entirely to miss the point. He argues that in the course of trains of thought we believe 
many things which do not lead to action. This objection is however beside the mark, because 
[p.170] it is not asserted that a belief is an idea which does actually lead to action, but one which 
would lead to action in suitable circumstances; just as a lump of arsenic is called poisonous not 
because it actually has killed or will kill anyone, but because it would kill anyone if he ate it.  Mr 
Russell's second argument is, however, more formidable. He points out that it is not possible to 
suppose that beliefs differ from other ideas only in their effects, for if they were otherwise identical 
their effects would be identical also. This is perfectly true, but it may still remain the case that the 
nature of the difference between the causes is entirely unknown or very vaguely known, and that 
what we want to talk about is the difference between the effects, which is readily observable and 
important. 
 
As soon as we regard belief quantitatively, this seems to me the only view we can take of it. It could 
well be held that the difference between believing and not believing lies in the presence or absence 
of introspectible feelings. But when we seek to know what is the difference between believing more 
firmly and believing less firmly, we can no longer regard it as consisting in having more or less of 
certain observable feelings; at least I personally cannot recognize any such feelings. The difference 
seems to me to lie in how far we should act on these beliefs: this may depend on the degree of some 
feeling or feelings, but I do not know exactly what feelings and I do not see that it is indispensable 
that we should know. Just the same thing is found in physics; men found that a wire connecting 
plates of zinc and copper standing in acid deflected a magnetic needle in its neighbourhood.  
Accordingly as the needle was more or less deflected the wire was said to carry a larger or a smaller 
current. The nature of this 'current' could only be conjectured: what were observed and measured 
were simply its effects.  It will no doubt be objected that we know how strongly [p.171] we believe 
things, and that we can only know this if we can measure our belief by introspection. This does not 
seem to me necessarily true; in many cases, I think, our judgment about the strength of our belief is 
really about how we should act in hypothetical circumstances. It will be answered that we can only 
tell how we should act by observing the present belief-feeling which determines how we should act; 



 15

but again I doubt the cogency of the argument. It is possible that what determines how we should 
act determines us also directly or indirectly to have a correct opinion as to how we should act, 
without its ever coming into consciousness. 
 
Suppose, however, I am wrong about this and that we can decide by introspection the nature of 
belief, and measure its degree; still, I shall argue, the kind of measurement of belief with which 
probability is concerned is not this kind but is a measurement of belief qua basis of action. This can 
I think be shown in two ways. First, by considering the scale of probabilities between 0 and 1, and 
the sort of way we use it, we shall find that it is very appropriate to the measurement of belief as a 
basis of action, but in no way related to the measurement of an introspected feeling. For the units in 
terms of which such feelings or sensations are measured are always, I think, differences which are 
just perceptible: there is no other way of obtaining units. But I see no ground for supposing that the 

interval between a belief of degree 
3
1  and one of degree 

2
1  consists of as many just perceptible 

changes as does that between one of 
3
2 and one of 

6
5 , or that a scale based on just perceptible 

differences would have any simple relation to the theory of probability. On the other hand the 

probability of 
3
1  is clearly related to the kind of belief which would lead to a bet of 2 to 1, and it 

will be shown below how to generalize this relation so as to apply to action in general. Secondly, 
the quantitative aspects of beliefs as the basis of action are evidently more important than the 
intensities of belief-feelings. [p.170] The latter are no doubt interesting, but may be very variable 
from individual to individual, and their practical interest is entirely due to their position as the 
hypothetical causes of beliefs qua bases of action. 
 
It is possible that some one will say that the extent to which we should act on a belief in suitable 
circumstances is a hypothetical thing, and therefore not capable of measurement.  But to say this is 
merely to reveal ignorance of the physical sciences which constantly deal with and measure 
hypothetical quantities; for instance, the electric intensity at a given point is the force which would 
act on a unit charge if it were placed at the point.  
 
Let us now try to find a method of measuring beliefs as bases of possible actions. It is clear that we 
are concerned with dispositional rather than with actualized beliefs; that is to say, not with beliefs at 
the moment when we are thinking of them, but with beliefs like my belief that the earth is round, 
which I rarely think of, but which would guide my action in any case to which it was relevant.   
 
The old-established way of measuring a person's belief is to propose a bet, and see what are the 
lowest odds which he will accept. This method I regard as fundamentally sound; but it suffers from 
being insufficiently general, and from being necessarily inexact. It is inexact partly because of the 
diminishing marginal utility of money, partly because the person may have a special eagerness or 
reluctance to bet, because he either enjoys or dislikes excitement or for any other reason, e.g. to 
make a book. The difficulty is like that of separating two different co-operating forces. Besides, the 
proposal of a bet may inevitably alter his state of opinion; just as we could not always measure 
electric intensity by actually introducing a charge and seeing what force it was subject to, because 
the introduction of the charge would change the distribution to be measured.  
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[p.173] 
 
In order therefore to construct a theory of quantities of belief which shall be both general and more 
exact, I propose to take as a basis a general psychological theory, which is now universally 
discarded, but nevertheless comes, I think, fairly close to the truth in the sort of cases with which 
we are most concerned. I mean the theory that we act in the way we think most likely to realize the 
objects of our desires, so that a person's actions are completely determined by his desires and 
opinions. This theory cannot be made adequate to all the facts, but it seems to me a useful 
approximation to the truth particularly in the case of our self-conscious or professional life, and it is 
presupposed in a great deal of our thought. It is a simple theory and one which many psychologists 
would obviously like to preserve by introducing unconscious desires and unconscious opinions in 
order to bring it more into harmony with the facts. How far such fictions can achieve the required 
result I do not attempt to judge: I only claim for what follows approximate truth, or truth in relation 
to this artificial system of psychology, which like Newtonian mechanics can, I think, still be 
profitably used even though it is known to be false.   
 
It must be observed that this theory is not to be identified with the psychology of the Utilitarians, in 
which pleasure had a dominating position. The theory I propose to adopt is that we seek things 
which we want, which may be our own or other people's pleasure, or anything else whatever, and 
our actions are such as we think most likely to realize these goods.  But this is not a precise 
statement, for a precise statement of the theory can only be made after we have introduced the 
notion of quantity of belief.  
 
Let us call the things a person ultimately desires 'goods', and let us at first assume that they are 
numerically measurable and additive. That is to say that if he prefers for its own sake an hour's 
swimming to an hour's reading, he will prefer [p.174] two hours' swimming to one hour's 
swimming and one hour's reading. This is of course absurd in the given case but this may only be 
because swimming and reading are not ultimate goods, and because we cannot imagine a second 
hour's swimming precisely similar to the first, owing to fatigue, etc. 
 
Let us begin by supposing that our subject has no doubts about anything, but certain opinions about 
all propositions.  Then we can say that he will always choose the course of action which will lead in 
his opinion to the greatest sum of good.  
 
It should be emphasized that in this essay good and bad are never to be understood in any ethical 
sense but simply as denoting that to which a given person feels desire and aversion. 
 
The question then arises how we are to modify this simple system to take account of varying 
degrees of certainty in his beliefs. I suggest that we introduce as a law of psychology that his 
behaviour is governed by what is called the mathematical expectation; that is to say that, if p is a 
proposition about which he is doubtful, any goods or bads for whose realization p is in his view a 
necessary and sufficient condition enter into his calculations multiplied by the same fraction, which 
is called the 'degree of his belief in p'.  We thus define degree of belief in a way which presupposes 
the use of the mathematical expectation. 
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We can put this in a different way. Suppose his degree of belief in p is 
n
m ; then his action is such as 

he would choose it to be if he had to repeat it exactly n times, in m of which p was true, and in the 
others false. [Here it may be necessary to suppose that in each of the n times he had no memory of 
the previous ones.] 
 
This can also be taken as a definition of the degree of belief, and can easily be seen to be equivalent 
to the previous definition. Let us give an instance of the sort of case which might occur. I am at a 
cross-roads and do not know the way; but I rather think one of the two ways is right. I propose 
therefore [p.175]  to go that way but keep my eyes open for someone to ask; if now I see someone 
half a mile away over the fields, whether I turn aside to ask him will depend on the relative 
inconvenience of going out of my way to cross the fields or of continuing on the wrong road if it is 
the wrong road. But it will also depend on how confident I am that I am right; and clearly the more 
confident I am of this the less distance I should be willing to go from the road to check my opinion.  
I propose therefore to use the distance I would be prepared to go to ask, as a measure of the 
confidence of my opinion;  and what I have said above explains how this is to be done.  We can set 
it out as follows: suppose the disadvantage of going x yards to ask is ƒ(x), the advantage of arriving 
at the right destination is r, that of arriving at the wrong one w.  Then if I should just be willing to 
go a distance d to ask, the degree of my belief that I am on the right road is given by 
 

wr
dfp

−
−= )(1  

 
For such an action is one it would just pay me to take, if I had to act in the same way n times, in np 
of which I was on the right way but in the others not. 
 
For the total good resulting from not asking each time 
 
 = npr + n(1-p)w 
 
 = nw + np(r - w) 
 
that resulting from asking at distance x each time  
 
 = nr - nƒ(x) [I  now always go right.] 
 
This is greater than the preceding expression, provided  
 
 ƒ(x) < (r - w)(1-p), 
  
∴ the critical distance d is connected with the degree of belief, by the relation ƒ(d) = (r - w)(1-p) 
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 or 
wr

dfp
−

−= )(1   as asserted above. 

 
[p.176] 
 
It is easy to see that this way of measuring belief gives results agreeing with ordinary ideas; at any 
rate to the extent that full belief is denoted by 1, full belief in the contradictory by 0, and equal 

belief in the two by 
2
1 .  Further, it allows validity to betting as means of measuring beliefs.  By 

proposing a bet on p we give the subject a possible course of action from which so much extra good 
will result to him if p is true and so much extra bad if p is false. Supposing, the bet to be in goods 
and bads instead of in money, he will take a bet at any better odds than those corresponding to his 
state of belief; in fact his state of belief is measured by the odds he will just take; but this is vitiated, 
as already explained, by love or hatred of excitement, and by the fact that the bet is in money and 
not in goods and bads.  Since it is universally agreed that money has a diminishing marginal utility, 
if money bets are to be used, it is evident that they should be for as small stakes as possible. But 
then again the measurement is spoiled by introducing the new factor of reluctance to bother about 
trifles. 
 
Let us now discard the assumption that goods are additive and immediately measurable, and try to 
work out a system with as few assumptions as possible. To begin with we shall suppose, as before, 
that our subject has certain beliefs about everything; then he will act so that what he believes to be 
the total consequences of his action will be the best possible.  If then we had the power of the 
Almighty, and could persuade our subject of our power, we could, by offering him options, 
discover how he placed in order of merit all possible courses of the world. In this way all possible 
worlds would be put in an order of value, but we should have no definite way of representing them 
by numbers. There would be no meaning in the assertion that the difference in value between α and 
β was equal to that between γ and δ. [Here and elsewhere we use Greek letters to represent the 
different possible totalities [p.177] of events between which our subject chooses -- the ultimate 
organic unities.] 
 
Suppose next that the subject is capable of doubt; then we could test his degree of belief in different 
propositions by making him offers of the following kind. Would you rather have world α in any 
event; or world β if p is true, and world γ if p is false? If, then, he were certain that p was true, 
simply compare α and β and choose between them as if no conditions were attached; but if he were 
doubtful his choice would not be decided so simply. I propose to lay down axioms and definitions 
concerning the principles governing choices of this kind. This is, of course, a very schematic 
version of the situation in real life, but it is, I think, easier to consider it in this form. 
 
There is first a difficulty which must be dealt with; the propositions like p in the above case which 
are used as conditions in the options offered may be such that their truth or falsity is an object of 
desire to the subject. This will be found to complicate the problem, and we have to assume that 
there are propositions for which this is not the case, which we shall call ethically neutral. More 
precisely an atomic proposition p is called ethically neutral if two possible worlds differing only in 
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regard to the truth of p are always of equal value; and a non-atomic proposition p is called ethically 
neutral if all its atomic truth-arguments1 are ethically neutral.   
 

We begin by defining belief of degree 
2
1  in an ethically neutral proposition. The subject is said to 

have belief of degree 
2
1  in such a proposition p if he has no preference between the options (1) α if 

p is true, β if p is false, and (2) α if p is false, β if p is true, but has a preference between α and β 
simply.  We suppose by an axiom that if this is true of any [p.178] one pair α, β, it is true of all 

such pairs.1  This comes roughly to defining belief of degree 
2
1  as such a degree of belief as leads 

to indifference between betting one way and betting the other for the same stakes. 
 

Belief of degree 
2
1  as thus defined can be used to measure values numerically in the following way. 

We have to explain what is meant by the difference in value between α and β being equal to that 
between γ and δ; and we define this to mean that, if p is an ethically neutral proposition believed to 

degree 
2
1 , the subject has no preference between the options (1) α if p is true, δ if p is false, and (2) 

β if p is true, γ if p is false. 
 
This definition can form the basis of a system of measuring values in the following way:-- 
 
Let us call any set of all worlds equally preferable to a given world a value: we suppose that if 
world α is preferable to β any world with the same value as α is preferable to any world with the 
same value as β and shall say that the value of α is greater than that of β. This relation 'greater than' 
orders values in a series. We shall use α henceforth both for the world and its value. 
 
Axioms. 
 

(1) There is an ethically neutral proposition p believed to degree 
2
1 . 

 
(2) If p, q are such propositions and the option 
 
 α if p, δ if not-p is equivalent to β if p, γ if not-p 
 
then  α if q, δ if not-q is equivalent to β if q, γ if not-q. 
 

Def. In the above case we say αβ = γδ. 

                                                 
1 [p.177] I assume here Wittgenstein's theory of propositions; it would probably be possible to give an equivalent 
definition in terms of any other theory. 
1 [p.178]  α and β must be supposed so far undefined as to be compatible with both p and not-p. 
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Theorems. If αβ = γδ 

 
        then βα = δγ, αγ = βδ, γα = δβ 
 
[p.179] 
 
(2a) If αβ = γδ, then α > β is equivalent to γ > δ 
 
 and α = β is equivalent to γ = δ 
 
(3) If option A is equivalent to option B and B to C, then A to C. 
 
 Theorem: If αβ = γδ and βη = ζγ 
 
  then αη  = ζδ 
 
(4) If αβ = γδ, γδ = ηζ , then αβ = ηζ . 
 
(5) (α, β, γ). E!(ιx) (αx = βγ) 
 
(6) (α, β). E!(ιx) (αx = xβ) 
 
(7) Axiom of continuity: -- Any progression has a limit (ordinal). 
 
(8) Axiom of Archimedes. 
 
These axioms enable the values to be correlated one-one with real numbers so that if α1 
corresponds to α, etc. 
 
 αβ = γδ . ≡ . α1 - β1 = γ1 - δ1. 
 
Henceforth we use α for the correlated real number α1 also. 
 
Having thus defined a way of measuring value we can now derive a way of measuring belief in 
general. If the option of α for certain is indifferent with that of β if p is true and γ  if p is false1 , we 
can define the subject's degree of belief in p as the ratio of the difference between α and γ to that 
between β and γ ; which we must suppose the same for all α's, β's and γ's that satisfy the conditions.  
This amounts roughly [p.180] to defining the degree of belief in p by the odds at which the subject 
would bet on p, the bet being conducted in terms of differences of value as defined. The definition 
only applies to partial belief and does not include certain beliefs; for belief of degree 1 in p, α for 
certain is indifferent with α if p and any β if not-p. 
                                                 
1 [p.179] Here β must include the truth of p, γ its falsity; p need no longer be ethically neutral.  But we have to assume 
that there is a wolrd with any assigned value in which p is true, and one in which p is false. 
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We are also able to define a very useful new idea -- the 'degree of belief in p given q'.  This does not 
mean the degree of belief in ' If p then q ', or that in 'p entails q ', or that which the subject would 
have in p if he knew q, or that which he ought to have. It roughly expresses the odds at which he 
would now bet on p, the bet only to be valid if q is true.  Such conditional bets were often made in 
the eighteenth century. 
 
The degree of belief in p given q is measured thus. Suppose the subject indifferent between the 
options (1) α if q true, β if q false, (2) γ if p true and q true, δ if p false and q true, β if q false. Then 
the degree of his belief in p given q is the ratio of the difference between α and δ to that between γ 
and δ, which we must suppose the same for any α, β, γ, δ which satisfy the given conditions. This is 
not the same as the degree to which he would believe p, if he believed q for certain; for knowledge 
of q might for psychological reasons profoundly alter his whole system of beliefs. 
 
Each of our definitions has been accompanied by an axiom of consistency, and in so far as this is 
false, the notion of the corresponding degree of belief becomes invalid. This bears some analogy to 
the situation in regard to simultaneity discussed above.   
 
I have not worked out the mathematical logic of this in detail, because this would, I think, be rather 
like working out to seven places of decimals a result only valid to two. My logic cannot be regarded 
as giving more than the sort of way it might work. 
 
[p.181] 
 
From these definitions and axioms it is possible to prove the fundamental laws of probable belief 
(degrees of belief lie between 0 and 1): 
 
(1) Degree of belief in p + degree of belief in p  = 1 
 
(2) Degree of belief in p given q + degree of belief in p  given q = 1. 
 
(3) Degree of belief in (p and q) = degree of belief in p × degree of belief in q given p. 
 
(4) Degree of belief in (p and q) + degree of belief in (p and q ) = degree of belief in p. 
 
The first two are immediate.  (3) is proved as follows. 
 
Let degree of belief in p = x, that in q given p = y. 
 
Then ξ for certain ≡ ξ + (1-x)t if p true, ξ - xt if p false for any t. 
 
 ξ + (1 - x) t if p true ≡ 
 
  ξ + (1 - x) t + (1 - y) u if 'p and q' true, 
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  ξ + (1 - x) t -  yu if  p true q false;  for any u 
 
Choose u so that ξ + (1 - x) t - yu = ξ - xt, 
 
 i.e. let u = t/y (y ≠ 0) 
 
Then ξ for certain ≡ 
 
 � ξ + (1 - x) t + (1 - y) t/y  if  p and q true, 
 �  
  ξ - xt  otherwise. 
 

∴ degree of belief in 'p and q' = 
ytyt

xt
/)1( −+

 = xy. (t ≠ 0) 

 
If y = 0, take t = 0. 
 
[p.182] 
 
Then ξ for certain ≡ ξ if p true, ξ if p false 
 
 ≡ ξ + u if p true, q true; ξ if p false, q false, ξ if p false 
  
 ≡ ξ + u, pq true; ξ, pq false 
 
∴  degree of belief in pq = 0. 
 
(4) follows from (2), (3) as follows: -- 
 
Degree of belief in pq = that in p × that in q given p, by (3).  Similarly degree of belief in p q  = that 
in p × that in q  given p ∴  sum = degree of belief in p, by (2). 
 
These are the laws of probability, which we have proved to be necessarily true of any consistent set 
of degrees of belief. Any definite set of degrees of belief which broke them would be inconsistent in 
the sense that it violated the laws of preference between options, such as that preferability is a 
transitive asymmetrical relation, and that if α is preferable to β, β for certain cannot be preferable to 
α if p, β if not-p.  If anyone's mental condition violated these laws, his choice would depend on the 
precise form in which the options were offered him, which would be absurd. He could have a book 
made against him by a cunning better and would then stand to lose in any event. 
 
We find, therefore, that a precise account of the nature of partial belief reveals that the laws of 
probability are laws of consistency, an extension to partial beliefs of formal logic, the logic of 
consistency. They do not depend for their meaning on any degree of belief in a proposition being 
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uniquely determined as the rational one; they merely distinguish those sets of beliefs which obey 
them as consistent ones. 
 
Having any definite degree of belief implies a certain measure of consistency, namely willingness to 
bet on a given proposition at the same odds for any stake, the stakes being measured [p.183] in 
terms of ultimate values. Having degrees of belief obeying the laws of probability implies a further 
measure of consistency, namely such a consistency between the odds acceptable on different 
propositions as shall prevent a book being made against you. 
 
Some concluding remarks on this section may not be out of place. First, it is based fundamentally 
on betting, but this will not seem unreasonable when it is seen that all our lives we are in a sense 
betting. Whenever we go to the station we are betting that a train will really run, and if we had not a 
sufficient degree of belief in this we should decline the bet and stay at home. The options God gives 
us are always conditional on our guessing whether a certain proposition is true. Secondly, it is based 
throughout on the idea of mathematical expectation; the dissatisfaction often felt with this idea is 
due mainly to the inaccurate measurement of goods. Clearly mathematical expectations in terms of 
money are not proper guides to conduct. It should be remembered, in judging my system, that in it 

value is actually defined by means of mathematical expectation in the case of beliefs of degree 
2
1 , 

and so may be expected to be scaled suitably for the valid application in the case of other degrees of 
belief also. 
 
Thirdly, nothing has been said about degrees of belief when the number of alternatives is infinite. 
About this I have nothing useful to say, except that I doubt if the mind is capable of contemplating 
more than a finite number of alternatives. It can consider questions to which an infinite number of 
answers are possible, but in order to consider the answers it must lump them into a finite number of 
groups.  The difficulty becomes practically relevant when discussing induction, but even then there 
seems to me no need to introduce it. We can discuss whether past experience gives a high 
probability to the sun's rising to-morrow without [p.184] bothering about what probability it gives 
to the sun's rising each morning for evermore. For this reason I cannot but feel that Mr Ritchie's 
discussion of the problem1 is unsatisfactory; it is true that we can agree that inductive 
generalizations need have no finite probability, but particular expectations entertained on inductive 
grounds undoubtedly do have a high numerical probability in the minds of all of us. We all are 
more certain that the sun will rise to-morrow than that I shall not throw 12 with two dice first time, 

i.e. we have a belief of higher degree than 
36
35 in it. If induction ever needs a logical justification it is 

in connection with the probability of an event like this. 
 
 
                                                 
1 [p.184]  A. D. Ritchie, " Induction and Probability." Mind, 1926. p. 318. 'The conclusion of the foregoing discussion 
may be simply put. If the problem of induction be stated to be "How can inductive generalizations acquire a large 
numerical probability?" then this is a pseudo-problem, because the answer is "They cannot". This answer is not. 
however, a denial of the validity of induction but is a direct consequence of the nature of probability. It still leaves 
untouched the real problem of induction which is "How can the probability of an induction be increased?" and it leaves 
standing the whole of Keynes' discussion on this point.' 
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(4) THE LOGIC OF CONSISTENCY 

 
We may agree that in some sense it is the business of logic to tell us what we ought to think; but the 
interpretation of this statement raises considerable difficulties. It may be said that we ought to think 
what is true, but in that sense we are told what to think by the whole of science and not merely by 
logic. Nor, in this sense, can any justification be found for partial belief; the ideally best thing is that 
we should have beliefs of degree 1 in all true propositions and beliefs of degree 0 in all false 
propositions. But this is too high a standard to expect of mortal men, and we must agree that some 
degree of doubt or even of error may be humanly speaking justified. 
 
[p.185]  
 
Many logicians, I suppose, would accept as an account of their science the opening words of Mr 
Keynes' Treatise on Probability: "Part of our knowledge we obtain direct; and part by argument. 
The Theory of Probability is concerned with that part which we obtain by argument, and it treats of 
the different degrees in which the results so obtained are conclusive or inconclusive." Where Mr 
Keynes says 'the Theory of Probability', others would say Logic. It is held, that is to say, that our 
opinions can be divided into those we hold immediately as a result of perception or memory, and 
those which we derive from the former by argument. It is the business of Logic to accept the former 
class and criticize merely the derivation of the second class from them.  
 
Logic as the science of argument and inference is traditionally and rightly divided into deductive 
and inductive; but the difference and relation between these two divisions of the subject can be 
conceived in extremely different ways.  According to Mr Keynes valid deductive and inductive 
arguments are fundamentally alike; both are justified by logical relations between premiss and 
conclusion which differ only in degree. This position, as I have already explained, I cannot accept. I 
do not see what these inconclusive logical relations can be or how they can justify partial beliefs.  In 
the case of conclusive logical arguments I can accept the account of their validity which has been 
given by many authorities, and can be found substantially the same in Kant, De Morgan, Peirce and 
Wittgenstein. All these authors agree that the conclusion of a formally valid argument is contained 
in its premisses; that to deny the conclusion while accepting the premisses would be 
self-contradictory; that a formal deduction does not increase our knowledge, but only brings out 
clearly what we already know in another form; and that we are bound to accept its validity on pain 
of being [p.186] inconsistent with ourselves. The logical relation which justifies the inference is 
that the sense or import of the conclusion is contained in that of the premisses. 
 
But in the case of an inductive argument this does not happen in the least; it is impossible to 
represent it as resembling a deductive argument and merely weaker in degree; it is absurd to say 
that the sense of the conclusion is partially contained in that of the premisses. We could accept the 
premisses and utterly reject the conclusion without any sort of inconsistency or contradiction. 
 
It seems to me, therefore, that we can divide arguments into two radically different kinds, which we 
can distinguish in the words of Peirce as (1) 'explicative, analytic, or deductive' and (2) 
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'amplifiative, synthetic, or (loosely speaking) inductive'.1  Arguments of the second type are from an 
important point of view much closer to memories and perceptions than to deductive arguments. We 
can regard perception, memory and induction as the three fundamental ways of acquiring 
knowledge; deduction on the other hand is merely a method of arranging our knowledge and 
eliminating inconsistencies or contradictions. 
 
Logic must then fall very definitely into two parts: (excluding analytic logic, the theory of terms and 
propositions) we have the lesser logic, which is the logic of consistency, or formal logic; and the 
larger logic, which is the logic of discovery, or inductive logic. 
 
What we have now to observe is that this distinction in no way coincides with the distinction 
between certain and partial beliefs; we have seen that there is a theory of consistency in partial 
beliefs just as much as of consistency in certain beliefs, although for various reasons the former is 
not so important as the latter.  The theory of probability is in fact a generalization of formal logic; 
but in the process [p.187] of generalization one of the most important aspects of formal logic is 
destroyed. If p and q  are inconsistent so that q follows logically from p, that p implies q is what is 
called by Wittgenstein a 'tautology' and can be regarded as a degenerate case of a true proposition 
not involving the idea of consistency. This enables us to regard (not altogether correctly) formal 
logic including mathematics as an objective science consisting of objectively necessary 
propositions. It thus gives us not merely the αναγκη  λεγειν, that if we assert p we are bound in 
consistency to assert q also, but also the αναγκη  ειναι  that is p is true, so must q be.  But when we 
extend formal logic to include partial beliefs this direct objective interpretation is lost; if we believe 

pq to the extent of 
3
1 , and p q  to the extent of 

3
1 , we are bound in consistency to believe p also to 

the extent of 
3
1 . This is the αναγκη  λεγειν; but we cannot say that if pq is 

3
1 true and p q  is 

3
1  

true, p  also must be 
3
1  true, for such a statement would be sheer nonsense. There is no 

corresponding αναγκη  ειναι .  Hence, unlike the calculus of consistent full belief, the calculus of 
objective partial belief cannot be immediately interpreted as a body of objective tautology. 
 
This is, however, possible in a roundabout way; we saw at the beginning of this essay that the 
calculus of probabilities could be interpreted in terms of class-ratios; we have now found that it can 
also be interpreted as a calculus of consistent partial belief. It is natural, therefore, that we should 
expect some intimate connection between these two interpretations, some explanation of the 
possibility of applying the same mathematical calculus to two such different sets of phenomena. 
Nor is an explanation difficult to find; there are many connections between partial beliefs and 
frequencies.  For instance, experienced frequencies often lead to corresponding partial beliefs, and 
partial beliefs lead to the expectation of corresponding frequencies in accordance with Bernouilli's 
[p.188] Theorem. But neither of these is exactly the connection we want; a partial belief cannot in 
general be connected uniquely with any actual frequency, for the connection is always made by 
taking the proposition in question as an instance of a propositional function.  What propositional 
function we choose is to some extent arbitrary and the corresponding frequency will vary 
                                                 
1  [p.186] C.S. Peirce Change Love and Logic, p.92 
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considerably with our choice. . The pretensions of some exponents of the frequency theory that 
partial belief means full belief in a frequency proposition cannot be sustained. But we found that the 
very idea of partial belief involves reference to a hypothetical or ideal frequency; supposing goods 

to be additive, belief of degree 
n
m is the sort of belief which leads to the action which would be best 

if repeated n times in m of which the proposition is true; or we can say more briefly that it is the 
kind of belief most appropriate to a number of hypothetical occasions otherwise identical in a 

proportion 
n
m of which the proposition in question is true. It is this connection between partial 

belief and frequency which enables us to use the calculus of frequencies as a calculus of consistent 
partial belief. And in a sense we may say that the two interpretations are the objective and 
subjective aspects of the same inner meaning, just as formal logic can be interpreted objectively as a 
body of tautology and subjectively as the laws of consistent thought. 
 
We shall, I think, find that this view of the calculus of probability removes various difficulties that 
have hitherto been found perplexing. In the first place it gives us a clear justification for the axioms 
of the calculus, which on such a system as Mr Keynes' is entirely wanting. For now it is easily seen 
that if partial beliefs are consistent they will obey these axioms, but it is utterly obscure why Mr 
Keynes' [p.189] mysterious logical relations should obey them.1 We should be so curiously ignorant 
of the instances of these relations, and so curiously knowledgeable about their general laws. 
 
Secondly, the Principle of Indifference can now be altogether dispensed with; we do not regard it as 
belonging to formal logic to say what should be a man's expectation of drawing a white or a black 
ball from an urn; his original expectations may within the limits of consistency be any he likes; all 
we have to point out is that if he has certain expectations he is bound in consistency to have certain 
others. This is simply bringing probability into line with ordinary formal logic, which does not 
criticize premisses but merely declares that certain conclusions are the only ones consistent with 
thern. To be able to turn the Principle of Indifference out of formal logic is a great advantage; for it 
is fairly clearly impossible to lay down purely logical conditions for its validity, as is attempted by 
Mr Keynes. I do not want to discuss this question in detail, because it leads to hair-splitting and 
arbitrary distinctions which could be discussed for ever. But anyone who tries to decide by Mr 
Keynes' methods what are the proper alternatives to regard as equally probable in molecular 
mechanics, e.g. in Gibbs' phase-space, will soon be convinced that it is a matter of physics rather 
than pure logic. By using the multiplication formula, as it is used in inverse probability, we can on 
Mr Keynes' theory reduce all probabilities to quotients of a priori probabilities; it is therefore in 
regard to these latter that the Principle of Indifference is of primary importance; but here the 
question is obviously not one of formal logic. How can we on merely [p.190] logical grounds 
divide the spectrum into equally probable bands? 
 

                                                 
1  [p.189] It appears in Mr Keynes' system as if the principal axioms -- the laws of addition and multiplication -- were 
nothing but definitions.  This is merely a logical mistake; his definitions are formally invalid unless corresponding 
axioms are presupposed. Thus his definition of multiplication presupposes the law that if the probability of a given bh is 
equal to that of c given dh, and the probability of b given h is equal to that of d given h, then will the probabilities of ab 
given h and of cd given h be equal. 
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A third difficulty which is removed by our theory is the one which is presented to Mr Keynes' 
theory by the following case. I think I perceive or remember something but am not sure; this would 
seem to give me some ground for believing it, contrary to Mr Keynes' theory, by which the degree 
belief in it which it would be rational for me to have is that given by the probability relation 
between the proposition in question and the things I know for certain. He cannot justify a probable 
belief founded not on argument but on direct inspection. In our view there would be nothing 
contrary to formal  logic in such a belief ; whether it would be reasonable would depend on what I 
have called the larger logic which will be the subject of the next section; we shall there see that 
there is no objection to such a possibility, with which Mr Keynes' method of justifying probable 
belief solely by relation to certain knowledge is quite unable to cope. 
 

(5) THE LOGIC OF TRUTH 
 
The validity of the distinction between the logic of consistency and the logic of truth has been often 
disputed; it has been contended on the one hand that logical consistency is only a kind of factual 
consistency; that if a belief in p is inconsistent with one in q, that simply means that p and q are not 
both true, and that this is a necessary or logical fact.  I believe myself that this difficulty can be met 
by Wittgenstein's theory of tautology, according to which if a belief in p is inconsistent with one in 
q, that p and q are not both true is not a fact but a tautology. But I do not propose to discuss this 
question further here. 
 
From the other side it is contended that formal logic or the logic of consistency is the whole of 
logic, and inductive [p.191] logic either nonsense or part of natural science. This contention, which 
would I suppose be made by Wittgenstein, I feel more difficulty in meeting. But I think it would be 
a pity, out of deference to authority, to give up trying to say anything useful about induction.  
 
Let us therefore go back to the general conception of logic as the science of rational thought. We 
found that the most generally accepted parts of logic, namely, formal logic, mathematics and the 
calculus of probabilities, are all concerned simply to ensure that our beliefs are not 
self-contradictory. We put before ourselves the standard of consistency and construct these 
elaborate rules to ensure its observance. But obviously not this is not enough; we want our beliefs to 
be consistent not merely with one another but also with the facts1 : nor is it even clear that 
consistency is always advantageous; it may well be better to be sometimes right than never right. 
Nor when we wish to be consistent are we always able to be: there are mathematical propositions 
whose truth or falsity cannot as yet be decided. Yet it may humanly speaking be right to entertain a 
certain degree of belief in them on inductive or other grounds: a logic which proposes to justify 
such a degree of belief must be prepared actually to go against formal logic; for to a formal truth 
formal logic can only assign a belief of degree 1. We could prove in Mr Keynes' system that its 
probability is 1 on any evidence. This point seems to me to show particularly clearly that human 
logic or the logic of truth, which tells men how they should think, is not merely independent of but 
sometimes actually incompatible with formal logic. 
 
                                                 
1 [p.191] Cf. Kant: 'Denn obgleich eine Erkenntnis der logischen Form völlig gemäss sein möchte, dass ist sich selbst 
nicht widerspräche, so kann sie doch noch immer dem Gegenstande widersprechen.' Kritik der reinen Vernunft, First 
Edition. p. 59. 
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In spite of this nearly all philosophical thought about human logic and especially induction has tried 
to reduce it in some way [p.192] to formal logic. Not that it is supposed, except by a very few, that 
consistency will of itself lead to truth; but consistency combined with observation and memory is 
frequently credited with this power. 
 
Since an observation changes (in degree at least) my opinion about the fact observed, some of my 
degrees of belief after the observation are necessarily inconsistent with those I had before.  We have 
therefore to explain how exactly the observation should modify my degrees of belief; obviously if p 
is the fact observed, my degree of belief in q after the observation should be equal to my degree of 
belief in q given p before, or by the multiplication law to the quotient of my degree of belief in pq 
by my degree of belief in p.  When my degrees of belief change in this way we can say that they 
have been changed consistently by my observation. 
 
By using this definition, or on Mr Keynes' system simply by using the multiplication law, we can 
take my present degrees of belief, and by considering the totality of my observations, discover from 
what initial degrees of belief my present ones would have arisen by this process of consistent 
change. My present degrees of belief can then be considered logically justified if the corresponding 
initial degrees of belief are logically justified. But to ask what initial degrees of belief are justified, 
or in Mr Keynes' system what are the absolutely a priori probabilities, seems to me a meaningless 
question; and even if it had a meaning I do not see how it could be answered. 
 
If we actually applied this process to a human being, found out, that is to say, on what a priori 
probabilities his present opinions could be based, we should obviously find them to be ones 
determined by natural selection, with a general tendency to give a higher probability to the simpler 
alternatives.  But, as I say, I cannot see what could be meant by [p.193] asking whether these 
degrees of belief were logically justified.  Obviously the best thing would be to know for certain in 
advance what was true and what false, and therefore if any one system of initial beliefs is to receive 
the philosopher's approbation it should be this one. But clearly this would not be accepted by 
thinkers of the school I am criticising.  Another alternative is to apportion initial probabilities on the 
purely formal system expounded by Wittgenstein, but as this gives no justification for induction it 
cannot give us the human logic which we are looking for. 
 
Let us therefore try to get an idea of a human logic which shall not attempt to be reducible to formal 
logic.  Logic, we may agree, is concerned not with what men actually believe, but what  they ought 
to believe, or what it would be reasonable to believe. What then, we must ask, is meant by saying 
that it is reasonable for a man to have such and such a degree of belief in a proposition ? Let us 
consider possible alternatives. 
 
First, it sometimes means something explicable in terms of formal logic: this possibility for reasons 
already explained we may dismiss.  Secondly, it sometimes means simply that were I in his place 
(and not e.g. drunk) I should have such a degree of belief. Thirdly, it sometimes means that if his 
mind worked according to certain rules, which we may roughly call 'scientific method', he would 
have such a degree of belief. But fourthly it need mean none of these things for men have not 
always believed in scientific method, and just as we ask 'But am I necessarily reasonable," we can 
also ask 'But is the scientist necessarily reasonable?'  In this ultimate meaning it seems to me that 
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we can identify reasonable opinion with the opinion of an ideal person in similar circumstances. 
What, however, would this ideal person's opinion be? As has previously been remarked, the highest 
ideal would be always to have a true [p.194] opinion and be certain of it; but this ideal is more 
suited to God than to man.1  
 
We have therefore to consider the human mind and what is the most we can ask of it.2 The human 
mind works essentially according to general rules or habits; a process of thought not proceeding 
according to some rule would simply be a random sequence of ideas; whenever we infer A from B 
we do so in virtue of some relation between them. We can therefore state the problem of the ideal 
as "What habits in a general sense would it be best for the human mind to have?" This is a large and 
vague question which could hardly be answered unless the possibilities were first limited by a fairly 
definite conception of human nature. We could imagine some very useful habits unlike those 
possessed by any men. [It must be explained that I use habit in the most general possible sense to 
mean simply rule or law of behaviour, including instinct: I do not wish to distinguish acquired 
[p.195] rules or habits in the narrow sense from innate rules or instincts, but propose to call them all 
habits alike.]  A completely general criticism of the human mind is therefore bound to be vague and 
futile, but something useful can be said if we limit the subject in the following way. 
 
Let us take a habit of forming opinion in a certain way; e.g. the habit of proceeding from the 
opinion that a toadstool is yellow to the opinion that it is unwholesome. Then we can accept the fact 
that the person has a habit of this sort, and ask merely what degree of opinion that the toadstool is 
unwholesome it would be best for him to entertain when he sees it; i.e. granting that he is going to 
think always in the same way about all yellow toadstools, we can ask what degree of confidence it 
would be best for him to have that they are unwholesome. And the answer is that it will in general 
be best for his degree of belief that a yellow toadstool is unwholesome to be equal to the proportion 
of yellow toadstools which are in fact unwholesome. (This follows from the meaning of degree of 
belief.) This conclusion is necessarily vague in regard to the spatio-temporal range of toadstools 

                                                 
1 [p.194] [Earlier draft of matter of preceding paragraph in some ways better. -- F.P.R. 
 
 What is meant by saying that a degree of belief is reasonable?  First and often that it is what I should entertain 
if I had the opinions of the person in question at the time but was otherwise as I am now, e.g. not drunk. But sometimes 
we go beyond this and ask: 'Am I reasonable?' This may mean, do I conform to certain enumerable, standards which we 
call scientific method, and which we value on account of those who practise them and the success they achieve.  In this 
sense to be reasonable means to think like a scientist, or to be guided only by ratiocination and induction or something of 
the sort (i.e. reasonable means reflective). Thirdly. we may go to the root of why we admire the scientist and criticize not 
primarily an individual opinion but a mental habit as being conducive or otherwise to the discovery of truth or to 
entertaining such degrees of belief as will be most useful. (To include habits of doubt or partial belief.) Then we can 
criticize an opinion according to the habit which produced it. This is clearly right because it all depends on this habit; it 
would not be reasonable to get the right conclusion to a syllogism by remembering vaguely that you leave out a term 
which is common to both premisses. 
 We use reasonable in sense 1 when we say of an argument of a scientist this does not seem to me reasonable; in 
sense 2 when we contrast reason and superstition or instinct; in sense 3 when we estimate the value of new methods of 
thought such as soothsaying.] 
 
2 [p.194] What follows to the end of the section is almost entirely based on the writings of C. S. Peirce. [Especially his 
"Illustrations of the Logic of Science", Popular Science Monthly, 1877 and 1878, reprinted in Chance Love and Logic 
(1923).] 
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which it includes, but hardly vaguer than the question which it answers. (Cf. density at a point of 
gas composed of molecules.) 
 
Let us put it in another way: whenever I make an inference, I do so according to some rule or habit. 
An inference is not completely given when we are given the premiss and conclusion; we require 
also to be given the relation between them in virtue of which the inference is made. The mind 
works by general laws ; therefore if it infers q from p, this will generally be because q is an instance 
of a function φx and p the corresponding instance of a function ψx such that the mind would always 
infer φx from ψx. When therefore we criticize not opinions but the processes by which they are 
formed, the rule of the inference determines for us a range to which the frequency theory can be 
applied. The rule of the inference [p.196] may be narrow, as when seeing lightning I expect 
thunder, or wide, as when considering 99 instances of a generalization which I have observed to be 
true I conclude that the 100th is true also. In the first case the habit which determines the process is 
'After lightning expect thunder'; the degree of expectation which it would be best for this habit to 
produce is equal to the proportion of cases of lightning which are actually followed by thunder. In 
the second case the habit is the more general one of inferring from 99 observed instances of a 
certain sort of generalization that the 100th instance is true also; the degree of belief it would be 
best for this habit to produce is equal to the proportion of all cases of 99 instances of a 
generalization being true, in which the 100th is true also. 
 
Thus given a single opinion, we can only praise or blame it on the ground of truth or falsity: given a 
habit of a certain form, we can praise or blame it accordingly as the degree of belief it produces is 
near or far from the actual proportion in which the habit leads to truth. We can then praise or blame 
opinions derivatively from our praise or blame of the habits that produce them. 
 
This account can be applied not only to habits of inference but also to habits of observation and 
memory; when we have a certain feeling in connection with an image we think the image represents 
something which actually happened to us, but we may not be sure about it ; the degree of direct 
confidence in our memory varies. If we ask what is the best degree of confidence to place in a 
certain specific memory feeling, the answer must depend on how often when that feeling occurs the 
event whose image it attaches to has actually taken place.  
 
Among the habits of the human mind a position of peculiar importance is occupied by induction. 
Since the time of Hume a great deal has been written about the justification for inductive inference. 
Ifume showed that it could not [p.197] be reduced to deductive inference or justified by formal 
logic. So far as it goes his demonstration seems to me final; and the suggestion of Mr Keynes that it 
can be got round by regarding induction as a form of probable inference cannot in my view be 
maintained. But to suppose that the situation which results from this is a scandal to philosophy is, I 
think, a mistake. 
 
We are all convinced by inductive arguments, and our conviction is reasonable because the world is 
so constituted that inductive arguments lead on the whole to true opinions. We are not, therefore, 
able to help trusting induction, nor if we could help it do we see any reason why we should, because 
we believe it to be a reliable process. It is true that if any one has not the habit of induction, we 
cannot prove to him that he is wrong; but there is nothing peculiar in that. If a man doubts his 
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memory or his perception we cannot prove to him that they are trustworthy; to ask for such a thing 
to be proved is to cry for the moon, and the same is true of induction. It is one of the ultimate 
sources of knowledge just as memory is: no one regards it as a scandal to philosophy that there is no 
proof that the world did not begin two minutes ago and that all our memories are not illusory. 
 
We all agree that a man who did not make inductions would be unreasonable: the question is only 
what this means. In my view it does not mean that the man would in any way sin against formal 
logic or formal probability; but that he had not got a very useful habit, without which he would be 
very much worse off, in the sense of being much less likely1 to have true opinions. 
 
This is a kind of pragmatism: we judge mental habits by whether they work, i.e. whether the 
opinions they lead [p.198] to are for the most part true, or more often true than those which 
alternative habits would lead to. 
 
Induction is such a useful habit, and so to adopt it is reasonable. All that philosophy can do is to 
analyse it, determine the degree of its utility, and find on what characteristics of nature this depends. 
An indispensable means for investigating these problems is induction itself, without which we 
should be helpless. In this circle lies nothing vicious. It is only through memory that we can 
determine the degree of accuracy of memory; for if we make experiments to determine this effect, 
they will be useless unless we remember them. 
 
Let us consider in the light of the preceding discussion what sort of subject is inductive or human 
logic -- the logic of truth. Its business is to consider methods of thought, and discover what degree 
of confidence should be placed in them, i.e. in what proportion of cases they lead to truth. In this 
investigation it can only be distinguished from the natural sciences by the greater generality of its 
problems. It has to consider the relative validity of different types of scientific procedure, such as 
the search for a causal law by Mill's Methods, and the modern mathematical methods like the a 
priori arguments used in discovering the Theory of Relativity. The proper plan of such a subject is 
to be found in Mill1; I do not mean the details of his Methods or even his use of the Law of 
Causality.  But his way of treating the subject as a body of inductions about inductions, the Law of 
Causality governing lesser laws and being itself proved by induction by simple enumeration. The 
different scientific methods that can be used are in the last resort judged by induction by simple 
enumeration; we choose the simplest law that fits the facts, but unless we found that laws so 
obtained also fitted facts other than those they were made to fit, we should discard this procedure 
for some other. 
 
 

_______________________________________________________________ 
 
 

                                                 
1 [p.197] 'Likely' here simply means that I am not sure of this, but only have a certain degree of belief in it. 
1 [p.198] Cf. also the account of 'general rules' in the Chapter 'Of Unphilosophical Probability' in Hume's Treatise. 
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FURTHER CONSIDERATIONS 
 

(1928) 
 
 
Contents 
A. Reasonable Degree of Belief 
B. Statistics 
C. Chance 
 
[p.199] 
 

A. REASONABLE DEGREE OF BELIEF 
 
When we pass beyond reasonable = my, or = scientific, to define it precisely is quite impossible. 
Following Peirce, we predicate it of a habit not of an individual judgment. Roughly, reasonable 
degree of belief = proportion of cases in which habit leads to truth. But in trying to be more exact 
we encounter the following difficulties: 
 
(1) We cannot always take the actual habit: this maybe correctly derived from some previous 
accidentally misleading experience. We then look to wider habit of forming such a habit. 
 
(2) We cannot take proportion of actual cases; e.g. in a card game very rarely played, so that of the 
particular combination in question there are very few actual instances. 
 
(3) We sometimes really assume a theory of the world with laws and chances, and mean not the 
proportion of actual cases but what is chance on our theory. 
 
(4) But it might be argued that this complication was not necessary on account of (1) by which we 
only consider very general habits of which there are so many instances that, if chance on our theory 
differed from the actual proportion, our theory would have to be wrong. 
 
(5) Also in an ultimate case like induction, there could be no chance for it: it is not the sort of thing 
that has a chance.  
 
Fortunately there is no point in fixing on a precise sense of 'reasonable'; this could only be required 
for one of two [p.200] reasons either because the reasonable was the subject-matter of a science 
(which is not the case); or because it helped us to be reasonable to know what reasonableness is 
(which it does not, though some false notions might hinder us). To make clear that it is not needed 
for either of these purposes we must consider (1) the content of logic and (2) the utility of logic. 
 
 



 33

THE CONTENT OF LOGIC 
 
(1) Preliminary philosophico-psychological investigation into nature of thought, truth and 
reasonableness. 
 
(2) Formulae for formal inference = mathematics. 
 
(3) Hints for avoiding confusion (belongs to medical psychology). 
 
(4) Outline of most general propositions known or used as habits of inference from an abstract point 
of view; either crudely inductive, as 'Mathematical method has solved all these other problems, 
therefore ...', or else systematic, when it is called metaphysics. All this might anyhow be called 
metaphysics; but it is regarded as logic when adduced as bearing on an unsolved problem, not 
simply as information interesting for its own sake. 
 
The only one of these which is a distinct science is evidently (2). 
 

THE UTILITY OF LOGIC 
 
That of (1) above and of (3) are evident: the interesting ones are (2) and (4). (2) = mathematics is 
indispensable for manipulating and systematizing our knowledge. Besides this (2) and (4) help us in 
some way in coming to conclusions in judgment. 
 
[p.201] 
 

LOGIC AS SELF-CONTROL (Cf. Peirce) 
 
Self-control in general means either 
 
(1) not acting on the temporarily uppermost desire, but stopping to think it out, i.e.  pay regard to all 
desires and see which is really stronger; its value is to eliminate inconsistency in action; 
 
or (2) forming as a result of a decision habits of acting not in response to temporary desire or 
stimulus but in a definite way adjusted to permanent desire. 
 
The difference is that in (1) we stop to think it out but in (2) we've thought it out before and only 
stop to do what we had previously decided to do. 
 
So also logic enables us 
 
(1) Not to form a judgment on the evidence immediately before us, but to stop and think of all else 
that we know in any way relevant. It enables us not to be inconsistent, and also to pay regard to very 
general facts, e.g. all crows I've seen are black, so this one will be -- No; colour is in such and such 
other species a variable quality. Also e.g. not merely to argue from φa, φb...to (x).φx probable, but to 
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consider the bearing of a, b . . . are the class I've seen (and visible ones are specially likely or 
unlikely to be φ).  This difference between biassed and random selection.1  
 
(2) To form certain fixed habits of procedure or interpretation only revised at intervals when we 
think things out. In this it is the same as any general judgment; we should only regard the process as 
'logic' when it is very general, not e.g. to expect a woman to be unfaithful, but e.g. to disregard 
correlation coefficients with a probable error greater than themselves. 
 
With regard to forming a judgment or a partial judgment [p.202] (which is a decision to have a 
belief of such a degree, i.e. to act in a certain way) we must note: -- 
 
(a) What we ask is 'p?' not 'Would it be true to think p? ' nor 'Would it be reasonable to think p?' 
(But these might be useful first steps.) 
 
but (b) 'Would it be true to think p?' can never be settled without settling p to which it is equivalent. 
 
(c) 'Would it be reasonable to think p?' means simply 'Is p what usually happens in such a case?' and 
is as vague as 'usually'. To put this question may help us, but it will often seem no easier to answer 
than p itself. 
 
(d) Nor can the precise sense in which 'reasonable' or 'usually' can usefully be taken be laid down, 
nor weight assigned on any principle to different considerations of such a sort. E.g. the death-rate 

for men of 60 is 
10
1 , but all the 20 red-haired 60-year-old men I've known have lived till 70. What 

should I expect of a new red-haired man of 60? I can but put the evidence before me, and let it act 
on my mind. There is a conflict of two 'usually's' which must work itself out in my mind; one is not 
the really reasonable, the other the really unreasonable. 
 
(e) When, however, the evidence is very complicated, statistics are introduced to simplify it. They 
are to be chosen in such a way as to influence me as nearly as possible in the same way as would 
the whole facts they represent if I could apprehend them clearly.  But this cannot altogether be 
reduced to a formula; the rest of my knowledge may affect the matter;  thus p may be equivalent in 
influence to q, but not ph to qh. 
 
(f) There are exceptional cases in which 'It would be reasonable to think p' absolutely settles the 
matter. Thus if we are told that one of these people's names begins with A and that there are 8 of 

them, it is reasonable to believe to degree 
8
1 th that any particular one's name begins with A, [p.203] 

and this is what we should all do (unless we felt there was something else relevant). 
 
(g) Nevertheless, to introduce the idea of 'reasonable' is really a mistake; it is better to say 'usually', 
which makes clear the vagueness of the range: what is reasonable depends on what is taken as 

                                                 
1  [p.201] Vide infra 'Chance'. 



 35

relevant; if we take enough as relevant, whether it is reasonable to think p becomes at least as 
difficult a question as p.  If we take everything as relevant, they are the same. 
 
(h) What ought we to take as relevant? Those sorts of things which it is useful to take as relevant; if 
we could rely on being reasonable in regard to what we do take as relevant, this would mean 
everything. Otherwise it is impossible to say; but the question is one asked by a spectator not by the 
thinker himself: if the thinker feels a thing relevant he can't dismiss it ; and if he feels it irrelevant 
he can't use it. 
 
(i) Only then if we in fact feel very little to be relevant, do or can we answer the question by an 
appeal to what is reasonable, this being then equivalent to what we know and consider relevant. 
 
(1) What are or are not taken as relevant are not only propositions but formal facts, e.g. a = a: we 
may react differently to φa than to any other φx not because of anything we know about a but e.g. 
for emotional reasons. 
 
[p.204] 
 

B. STATISTICS 
 
The science of statistics is concerned with abbreviating facts about numerous individuals which are 
interpreted as a random selection from an infinite 'population'. If the qualities concerned are 
discrete, this means simply that we consider the proportions of the observed individuals which have 
the qualities, and ascribe these proportions to the hypothetical population. If the qualities are 
continuous, we take the population to be of a convenient simple form containing various parameters 
which are then chosen to give the highest probability to the instances observed. In either case the 
probable error is calculated for such a sample from such a population. (For all this see Fisher.)1  
 
The significance of this procedure is that we record in a convenient simple form 
 
(1) The approximate proportions having the given qualities in different degrees, I . 
 
(2) The number of instances which we have observed (the weight of our induction) (probable error). 
 
For the use of the figures to give a degree of belief with regard to a new instance no rule can be 
given. 
 
The introduction of an infinite population is a stupid fiction, which cannot be defended except by 
some reference to proceeding to a limit, which destroys its sense. The procedure of calculating 
parameters by maximum likelihood and probable error can be defined as a process in pure 
mathematics; its significance is in suggesting a theory or set [p.204] of chances. Proportion of 
infinite population should be replaced by chance. 
 
                                                 
1  [p.204] R.A. Fisher "Theory of statistical estimation,", Proc. Camb. Phil. Soc., 22, pp.700-725 (1925), and Statistical 
Methods for Research Workers. 
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Of course the purpose is not always simple induction but causal analysis: we find the chances are 
not what we expect, therefore the die is biassed or people are more careful nowadays etc. 
 
[p.206] 
 

C. CHANCE 
 
(1) There are no such things as objective chances in the sense in which some people imagine there 
are, e.g. N. Campbell, Nisbet.1  
 
There is, for instance, no established fact of the form 'In n consecutive throws the number of heads 

lies between )(
2

nn ε± '. On the contrary we have good reason to believe that any such law would be 

broken if we took enough instances of it. 
 
Nor is there any fact established empirically about infinite series of throws; this formulation is only 
adopted to avoid contradiction by experience; and what no experience can contradict, none can 
confirm, let alone establish. 
 
(N. Campbell makes a simple mistake about this.) 
 
A crude frequency theory is ruled out because it justifies the 'maturity of odds' argument, e.g. in 
regard to sex of offspring. 
 
(2) Hence chances must be defined by degrees of belief; but they do not correspond to anyone's 
actual degrees of belief; the chances of 1,000 heads, and of 999 heads followed by a tail, are equal, 
but everyone expects the former more than the latter. 
 
(3) Chances are degrees of belief within a certain system of beliefs and degrees of belief; not those 
of any actual person, but in a simplified system to which those of actual people, especially the 
speaker, in part approximate. 
 
(4) This system of beliefs consists, firstly, of natural laws, [p.207] which are in it believed for 
certain, although, of course, people are not really certain of them. 
 
(5) Besides these the system contains various things of this sort: when knowing ψx and nothing else 
relevant, always expect φx with degree of belief p (what is or is not relevant is also specified in the 
system); which is also written the chance of φ given ψ is p (if p = 1 it is the same as a law). These 
chances together with the laws form a deductive system according to the rules of probability, and 
the actual beliefs of a user of the system should approximate to those deduced from a combination 
of the system and the particular knowledge of fact possessed by the user, this last being (inexactly) 
taken as certain. 
 

                                                 
1 [p.206] R.H. Nisbet, "The Foundations of Probability", Mind, 1926. 
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(6) The chances in such a system must not be confounded with frequencies; the chance of ψx given 
φx might be different even from the known frequency of ψ's which are φ's, E.g. the chance of a coin 

falling heads yesterday is 
2
1  since 'yesterday' is irrelevant, but the proportion that actually fell heads 

yesterday might be 1. 
 
(7) It is, however, obvious that we are not armed with systems giving us a degree of belief in every 
possible proposition for any basis of factual knowledge. Our systems only cover part of the field; 
and where we have no system we say we do not know the chances. 
 
(8) The phenomena for which we have systematic chances are games of chance, births, deaths, and 
all sorts of correlation 
 

(9) What we mean by objective chance is not merely our having in our system a chance 
)(
)(

x
x

ψ
φ , but 

our having no hope of modifying our system into a pair of laws αx.ψx. ⊃⊃⊃⊃ x .φx: βx.ψx. ⊃⊃⊃⊃ x . ~ φx, 
etc., where αx, βx are disjunctions of readily observable properties (previous in time to φx).  This 
[p.208] occurs, as Poincaré points out1, when small causes produce large effects. 
 
Chances are in another sense objective, in that everyone agrees about them, as opposed e.g. to odds 
on horses. 
 
(10) What we mean by an event not being a coincidence, or not being due to chance, is that if we 
came to know it; it would make us no longer regard our system as satisfactory, although on our 
system the event may be no more improbable than any alternative.  Thus 1,000 heads running 
would not be due to chance; i.e. if we observed it we should change our system of chances for that 
penny. If it is called h, the chances in our system with h as hypothesis are markedly different from 
our actual degrees of belief in things given h. 
 
By saying a thing is not due to chance, we only mean that our system of chances must be changed, 
not that it must become a system of laws. Thus for a biassed coin to come down heads is not due to 

chance even though it doesn't always do so; e.g. chance may = 
3
2 , say, not 

2
1 . 

 
If we say 'Our meeting was not due to chance', i.e. designed, design is simply a factor modifying the 
chances; it might also be e.g. that we walk in the same road. 
 
(11) This is why N. Campbell thinks coincidences cannot be allowed to occur; i.e. coincidences . ⊃⊃⊃⊃ . 
system wrong, ∴  system . ⊃⊃⊃⊃ . no coincidences. Apparently formally conclusive; but this is a mistake 
because the system is not a proposition which is true or false, but an imperfect approximation to a 
state of mind where imperfections can in certain circumstances become particularly glaring. 
 

                                                 
1 [p.208[ See Science et Hypothèse and Science et Méthode. 
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(12) By things being ultimately due to chance, we mean that there is no law (here generalization of 
no more than manageable complexity), known or unknown, which determines the future from the 
past. If we suppose further that they have ultimate [p.209] chances, this means a sort of best 
possible system in which they have these chances. 
 
(13) In choosing a system we have to compromise between two principles: subject always to the 
proviso that the system must not contradict any facts we know, we choose (other things being 
equal) the simplest system, and (other things being equal) we choose the system which gives the 
highest chance to the facts we have observed. This last is Fisher's 'Principle of Maximum 
Likelihood', and gives the only method of verifying a system of chances. 
 
(14) Probability in Physics means chance as here explained, with possibly some added complexity 
because we are concerned with a 'theory' in Campbell's sense, not merely an ordinary system which 
is a generalization of Campbell's 'law.' What chance in a theory is can hardly be explained until we 
know more about the nature of theories.1  
 
(15) Statistical science must be briefly dealt with from our point of view; it has three parts 
 
(a) collection and arrangement of selections from multitudinous data. 
(b) Induction = forming a system of chances from the data by means of the Principle of Maximum 
Likelihood. 
(c) Causal analysis; e.g. this die falls so often this way up, therefore its centre of gravity must be 
displaced towards the opposite face. 
 
(16) The only difficulty presented is in connection with (c) causal analysis, in which we seem to 
take a statement of chances as a fact, and to argue 'Its falling so often six is not due to chance'. ∴  

'chance > 
6
1 ' ∴  'c.g. displaced '. Reasoning which seems incompatible with our solution of the 

paradox that chance = 1/6 is inconsistent with this coincidence, which was that 'chance = 
6
1 ', 

'chance > 
6
1 ', were not propositions [p.210] and so could not serve as premisses or conclusions of 

arguments. 
 
(17) The difficulty is removed by the reflection that the system we are ultimately using not only 

gives us degree of belief or chance of x falling six given x is tossed = 
6
1 , but also that that of x 

failing six given x is tossed and biassed  > 
6
1 .  Consequently by transposition x is biassed / x falls 

six. x is tossed > x is biassed / x is tossed.  If a/bh > a/h then b/ah > b/h, and this is how we are 
arguing. The chance of a x falling six is p seems to be treated as a genuine proposition, but what is 

                                                 
1 [p.209] [See next section -- Ed.] 
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really meant is an unexpressed condition, which on our system when added to the hypothesis makes 
the chance p. 
 
(18) We can state it this way: statistical causal analysis presupposes a fundamental system within 
which it moves and which it leaves unchanged; this neither is nor appears to be treated like a 
proposition. What appears to be so treated is a narrower system derived or derivable from the 
fundamental system by the addition of an empirical premiss, and what is really treated as a 
proposition and modified or rejected is not the narrower system but the empirical premiss on which 
it is based. 
 
Of course this empirical premiss may be unknown or very vaguely known; e.g. I conclude from the 
fact that more boys are born than girls to some superiority in the number, mobility or capacity for 
fertilization of male-bearing spermatazoa or one of a thousand other possible causes, because by the 
Principle of Indifference, which is part of my fundamental system, the observed inequality would be 
so unlikely if there were no such difference. But there seems no fundamental difference between 
this case and the biassed coin. 
 
(19) Note on Poincaré's problem 'Why are chance events subject to law?' The fundamental answer 
to this is that they are not, taking the whole field of chance events no generalizations about them are 
possible (consider e.g. infectious diseases, [p.211] dactyls in hexameters, deaths from horse kicks, 
births of great men). 
 
Poincaré says it is paradoxical that the actuary can from ignorance derive so easily such useful 
conclusions whereas if he knew the laws of health he would have to go through endless 
calculations. In fact it is not from ignorance that he works, but from experience of frequencies. 
 
(20) Note on 'random'. 
 
Keynes1 gives a substantially correct account of this. But  
 
(a) It is essential to bring in the notion of a description.  What we want is not a is a random member 
of x̂ (Sx) for the purpose of φx, but the description (ιx)(ψx) is a random description when x = 
(ιx)(ψx) is irrelevant to φx/Sx.h.   
 
(b) It is essential to extend the term to cover not merely a selection of one term but of many , thus, 
ψ x̂  gives a random selection of n S's with regard to φx̂  means α = x̂ (ψx) is irrelevant to 
probabilities of the form: Proportion of α which is φ = λ/αεn . α ⊂⊂⊂⊂  x̂ (Sx) . h. 
 
The idea of random selection is useful in induction, where the value of the argument 'A proportion 
λ of S's are φ's' ∴  'A proportion λ of S's are φ's' depends on whether ψ is a random selector. If λ = 1 
of course the value of the argument is strengthened if ψ is biassed against φ, weakened if ψ is 
biassed in favour of it.  

_______________________________________________________________ 

                                                 
1 [p.211] Treatise on Probability, p.291. 
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LAST PAPERS (1929):  
 

Probability and Partial Belief 
 
[p.256] 
 
The defect of my paper on probability was that it took partial belief as a psychological phenomenon 
to be defined and measured by a psychologist. But this sort of psychology goes a very little way and 

would be quite unacceptable in a developed science. In fact the notion of a belief of degree 
3
2  is 

useless to an outside observer, except when it is used by the thinker himself who says 'Well, I 

believe it to an extent 
3
2 ', i.e. (this at least is the most natural interpretation) 'I have the same degree 

of belief in it as in p ∨  q when I think p, q, r equally likely and know that exactly one of them is 
true.'  Now what is the point of this numerical comparison?  how is the number used?  In a great 
many cases it is used simply as a basis for getting further numbers of the same sort issuing finally in 
one so near 0 or 1 that it is taken to be 0 or 1 and the partial belief to be full belief. But sometimes 
the number is used itself in making a practical decision. How? I want to say in accordance with the 
law of mathematical expectation; but I cannot do this, for we could only use that rule if we had 
measured goods and bads. But perhaps in some sort of way we approximate to it, as we are 
supposed in economics to maximize an unmeasured utility.  The question also arises why just this 
law of mathematical expectation. The answer to this is that if we use probability to measure utility, 
as explained in my paper, then consistency requires just this law. Of course if utility were measured 
in any other way, e.g. in money, we should not use mathematical expectation. 
 
If there is no meaning in equal differences of utility, then money is as good a way as any of 
measuring them. A meaning may, however, be given by our probability method, or by means of 
time: i.e. x - y = y - z if x for 1 day and z for 1 [p. 257] day = y for 2 days. But the periods must be 
long or associated with different lives or people to prevent mutual influence.  Do these two methods 
come to the same thing? Could we prove it by Bernoulli? Obviously not; Bernoulli only evaluates 
chances. A man might regard 1 good and 1 bad as equal to 2 neutral; but regard 2 bad as simply 
awful, not worth taking any chance of. (But it could be made up!  No, there would be a chance of its 
not being.) I think this shows my method of measuring to be the sounder; it alone goes for wholes. 
 
All this is just an idea; what sense is there really in it? We can, I think, say this: -- 
 
A theory is a set of propositions which contains p and q whenever it contains p and q, and if it 
contains any p contains all its logical consequences. The interest of such sets comes from the 
possibility of our adopting one of them as all we believe. 
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A probability-theory is a set of numbers associated with pairs of propositions obeying the calculus 
of probabilities. The interest of such a set comes from the possibility of acting on it consistently. 
 
Of course, the mathematician is only concerned with the form of probability; it is quite true that he 
only deals in certainties. 
 

_______________________________________________________________ 
 

The End 


